Do Asset Price Drops Foreshadow Recessions?

John C. Bluedorn\(^1\) Jörg Decressin\(^1\) Marco E. Terrones\(^1\)

\(^1\)Research Department
International Monetary Fund

International Symposium on Forecasting, 26 June 2012

The views expressed in this presentation are those of the authors and do not necessarily represent those of the IMF.
Asset price drops are often followed by recessions.
Empirical and theoretical links

- Asset price drops are often followed by recessions.
 - 1929 stock market crash and the Great Depression
 - Early 1990s asset price collapse and recession in Japan
 - 2008 asset price crash and the Great Recession

Empirical and theoretical links
Empirical and theoretical links

- Asset price drops are often followed by recessions.
 - 1929 stock market crash and the Great Depression
 - Early 1990s asset price collapse and recession in Japan
 - 2008 asset price crash and the Great Recession
- But, asset price falls do not always coincide with recessions.
Empirical and theoretical links

• Asset price drops are often followed by recessions.
 • 1929 stock market crash and the Great Depression
 • Early 1990s asset price collapse and recession in Japan
 • 2008 asset price crash and the Great Recession

• But, asset price falls do not always coincide with recessions.
 • Samuelson (1966): “The stock market has predicted 9 of the last 5 recessions.”
Asset price drops are often followed by recessions.

- 1929 stock market crash and the Great Depression
- Early 1990s asset price collapse and recession in Japan
- 2008 asset price crash and the Great Recession

But, asset price falls do not always coincide with recessions.

- Samuelson (1966): “The stock market has predicted 9 of the last 5 recessions.”

In theory, two reasons why asset price drops may signal a downturn.

- Asset prices affect current and future aggregate demand.
- Negative wealth effect on households, dampening consumption.
- Negative effect on firms' and banks' balance sheets, reducing investment and lending.
- Asset prices are forward-looking, reflecting future economic conditions. Changes in asset prices contain information about future growth.
Asset price drops are often followed by recessions.
 - 1929 stock market crash and the Great Depression
 - Early 1990s asset price collapse and recession in Japan
 - 2008 asset price crash and the Great Recession

But, asset price falls do not always coincide with recessions.
 - Samuelson (1966): “The stock market has predicted 9 of the last 5 recessions.”

In theory, two reasons why asset price drops may signal a downturn.
 - Asset prices affect current and future aggregate demand.
 - Negative wealth effect on households, dampening consumption.
 - Negative effect on firms’ and banks’ balance sheets, reducing investment and lending.
Empirical and theoretical links

- Asset price drops are often followed by recessions.
 - 1929 stock market crash and the Great Depression
 - Early 1990s asset price collapse and recession in Japan
 - 2008 asset price crash and the Great Recession
- But, asset price falls do not always coincide with recessions.
 - Samuelson (1966): “The stock market has predicted 9 of the last 5 recessions.”
- In theory, two reasons why asset price drops may signal a downturn.
 - Asset prices affect current and future aggregate demand.
 - Negative wealth effect on households, dampening consumption.
 - Negative effect on firms’ and banks’ balance sheets, reducing investment and lending.
 - Asset prices are forward-looking, reflecting future economic conditions. Changes in asset prices contain information about future growth.
Questions and findings

Key questions and our findings:

- Are asset price drops associated with the beginning of recessions in the G-7? Are the effects of equity prices on the conditional probability of beginning a new recession asymmetric?

 - Yes. Equity price drops and oil price rises are significantly associated with new recessions. However, house price drops are not.

 - Yes. Equity price drops have larger effects (in absolute terms) than equivalent equity price rises on the chances of a new recession.

 - Does the nature of the relationship between asset price drops and downturns change with the severity of recessions?

 - Yes. Equity price drops are even more strongly associated with severe recessions.
Key questions and our findings:

- Are asset price drops associated with the beginning of recessions in the G-7? Are the effects of equity prices on the conditional probability of beginning a new recession asymmetric?

- Does the nature of the relationship between asset price drops and downturns change with the severity of recessions?
Questions and findings

Key questions and our findings:

- Are asset price drops associated with the beginning of recessions in the G-7? Are the effects of equity prices on the conditional probability of beginning a new recession asymmetric?
 - Yes. Equity price drops and oil price rises are significantly associated with new recessions. However, house price drops are not.

- Does the nature of the relationship between asset price drops and downturns change with the severity of recessions?
Key questions and our findings:

- Are asset price drops associated with the beginning of recessions in the G-7? Are the effects of equity prices on the conditional probability of beginning a new recession asymmetric?
 - Yes. Equity price drops and oil price rises are significantly associated with new recessions. However, house price drops are not.
 - Yes. Equity price drops have larger effects (in absolute terms) than equivalent equity price rises on the chances of a new recession.

- Does the nature of the relationship between asset price drops and downturns change with the severity of recessions?
Key questions and our findings:

- Are asset price drops associated with the beginning of recessions in the G-7? Are the effects of equity prices on the conditional probability of beginning a new recession asymmetric?
 - Yes. Equity price drops and oil price rises are significantly associated with new recessions. However, house price drops are not.
 - Yes. Equity price drops have larger effects (in absolute terms) than equivalent equity price rises on the chances of a new recession.

- Does the nature of the relationship between asset price drops and downturns change with the severity of recessions?
 - Yes. Equity price drops are even more strongly associated with severe recessions.
Large literature on the relationship between financial variables and recessions
Previous literature and our contribution

- Large literature on the relationship between financial variables and recessions
 - Term spread: Estrella and Mishkin (1998), and many others since.
Large literature on the relationship between financial variables and recessions

- Term spread: Estrella and Mishkin (1998), and many others since.
Previous literature and our contribution

- Large literature on the relationship between financial variables and recessions
 - Term spread: Estrella and Mishkin (1998), and many others since.
Previous literature and our contribution

- Large literature on the relationship between financial variables and recessions
 - Term spread: Estrella and Mishkin (1998), and many others since.
- Our contribution
Previous literature and our contribution

- Large literature on the relationship between financial variables and recessions
 - Term spread: Estrella and Mishkin (1998), and many others since.

- Our contribution
 - Pull together these diverse strands of the literature in a simple and parsimonious framework.
Previous literature and our contribution

• Large literature on the relationship between financial variables and recessions
 • Term spread: Estrella and Mishkin (1998), and many others since.
 • Oil prices and recessions: Hamilton (2011).
• Our contribution
 • Pull together these diverse strands of the literature in a simple and parsimonious framework.
 • Focus on association with new recessions.
Previous literature and our contribution

- Large literature on the relationship between financial variables and recessions
 - Term spread: Estrella and Mishkin (1998), and many others since.

- Our contribution
 - Pull together these diverse strands of the literature in a simple and parsimonious framework.
 - Focus on association with new recessions.
 - Consider robustness to the rare events problem.
Previous literature and our contribution

• Large literature on the relationship between financial variables and recessions
 • Term spread: Estrella and Mishkin (1998), and many others since.
 • Oil prices and recessions: Hamilton (2011).

• Our contribution
 • Pull together these diverse strands of the literature in a simple and parsimonious framework.
 • Focus on association with new recessions.
 • Consider robustness to the rare events problem.
 • Explore non-linearities in the relationship between equity prices and recessions.
• Core data include:
 • Cyclical peaks and troughs of seasonally-adjusted real GDP, identified by the Bry-Boschan/Harding-Pagan algorithm.
 • Real equity price growth, term spread, real oil price, real house price growth.
Data

- Core data include:
 - Cyclical peaks and troughs of seasonally-adjusted real GDP, identified by the Bry-Boschan/Harding-Pagan algorithm.
 - Real equity price growth, term spread, real oil price, real house price growth

- Other data considered:
 - 10 year government bond rates, real GDP growth, rate of exchange rate depreciation versus USD
 - implied S&P volatility, net fall in real equity prices, real equity growth elsewhere, and others
Asset Prices and Recessions

John C. Bluedorn, Jörg Decressin, Marco E. Terrones

Motivation

Questions and Contributions

Data and Model

Empirical Results

Baseline

Robustness

One-step ahead classification

Conclusion

Data

• Core data include:
 - Cyclical peaks and troughs of seasonally-adjusted real GDP, identified by the Bry-Boschan/Harding-Pagan algorithm.
 - Real equity price growth, term spread, real oil price, real house price growth

• Other data considered:
 - 10 year government bond rates, real GDP growth, rate of exchange rate depreciation versus USD
 - implied S&P volatility, net fall in real equity prices, real equity growth elsewhere, and others

• Data are based on quarterly averages unless otherwise indicated.
• Cyclical peaks (binary) conditional on being in expansion.
Model

- Cyclical peaks (binary) conditional on being in expansion.
- Panel logit

\[
P(r_{i,t}|x_{i,t-1}) = \frac{\exp(x_{i,t-1}'\beta)}{1 + \exp(x_{i,t-1}'\beta)}
\]

\hat{Cyclical peaks (binary) conditional on being in expansion.}

\hat{Panel logit}

\hat{Country fixed effects and quarterly dummies included in all specifications unless otherwise indicated.}

\hat{All explanatory variables are once-lagged unless otherwise indicated.}
• Cyclical peaks (binary) conditional on being in expansion.
• Panel logit

\[
P(r_{i,t} | x_{i,t-1}) = \frac{\exp \left(x_{i,t-1}' \beta \right)}{1 + \exp \left(x_{i,t-1}' \beta \right)}
\]

• Country fixed effects and quarterly dummies included in all specifications unless otherwise indicated.
• Cyclical peaks (binary) conditional on being in expansion.

• Panel logit

\[P(r_i,t|x_{i,t-1}) = \frac{\exp(x'_{i,t-1}\beta)}{1 + \exp(x'_{i,t-1}\beta)} \]

• Country fixed effects and quarterly dummies included in all specifications unless otherwise indicated.

• All explanatory variables are \textit{once-lagged} unless otherwise indicated.
A first look at the data

Frequency Distribution of Real Equity Price Growth
Conditional on Business Cycle Phase

Note: The conditioning variable is once-lagged. Growth rates are expressed as changes in log levels of the series times 100. The expansion period density excludes the year before a peak. Year before a peak includes the peak. The p-value of the Kolmogorov–Smirnov test of the equality of densities is 0.002.
A first look at the data

Frequency Distribution of Term Spread
Conditional on Business Cycle Phase

Note: The conditioning variable is once-lagged. Growth rates are expressed as changes in log levels of the series times 100. The expansion period density excludes the year before a peak. Year before a peak includes the peak. The p-value of the Kolmogorov–Smirnov test of the equality of densities is 0.000.
A first look at the data

Frequency Distribution of Log Real Oil Price
Conditional on Business Cycle Phase

Note: The conditioning variable is once-lagged. Growth rates are expressed as changes in log levels of the series times 100. The expansion period density excludes the year before a peak. Year before a peak includes the peak. The p-value of the Kolmogorov–Smirnov test of the equality of densities is 0.001.
A first look at the data

Note: The conditioning variable is once-lagged. Growth rates are expressed as changes in log levels of the series times 100. The expansion period density excludes the year before a peak. Year before a peak includes the peak. The p-value of the Kolmogorov–Smirnov test of the equality of densities is 0.575.
A first look at the data

Frequency Distribution of Negative Real Equity Price Growth

Conditional on Business Cycle Phase

Note: The conditioning variable is once-lagged. Growth rates are expressed as changes in log levels of the series times 100. The expansion period density excludes the year before a peak. Year before a peak includes the peak. The p-value of the Kolmogorov–Smirnov test of the equality of densities is 0.002.
Predicting Recessions in the G-7
Baseline Results, 1970:Q1-2011:Q4

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Equity Price Growth</td>
<td>-0.0832***</td>
<td>-0.328***</td>
<td>-0.312***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0216)</td>
<td>(0.0991)</td>
<td>(0.0998)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term Spread</td>
<td></td>
<td>-0.529***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.463***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.1700)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.1770)</td>
</tr>
<tr>
<td>Log Real Oil Price</td>
<td></td>
<td></td>
<td>0.856***</td>
<td></td>
<td></td>
<td></td>
<td>0.948***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.2510)</td>
<td></td>
<td></td>
<td></td>
<td>(0.2560)</td>
</tr>
<tr>
<td>Real House Price Growth</td>
<td></td>
<td></td>
<td>0.0126</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0416)</td>
<td>(0.0408)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Real Equity Price Growth</td>
<td></td>
<td>-0.0792**</td>
<td>0.301***</td>
<td>0.281***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0323)</td>
<td>(0.1140)</td>
<td>(0.1040)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Obs.</td>
<td>948</td>
<td>948</td>
<td>948</td>
<td>948</td>
<td>948</td>
<td>948</td>
<td>948</td>
</tr>
<tr>
<td>AUC</td>
<td>0.787</td>
<td>0.77</td>
<td>0.733</td>
<td>0.703</td>
<td>0.749</td>
<td>0.799</td>
<td>0.844</td>
</tr>
</tbody>
</table>
Asset Prices and Recessions

John C. Bluedorn, Jörg Decressin, Marco E. Terrones

Motivation
Questions and Contributions
Data and Model
Empirical Results
Baseline
Robustness
One-step ahead classification
Conclusion

Baseline model

Receiver Operating Characteristic Curve

Area under ROC curve = 0.8438
Note: The underlying logit model contains explanatory variable set 7.
Marginal effects of equity prices

Effect of Real Equity Price Growth
Predicted Probabilities

Covariate Contribution

1st Quintile
Median
4th Quintile
Marginal effects of equity prices

Effect of Real Equity Price Growth

Predicted Probabilities

Covariate Contribution

1st Quintile
Median
4th Quintile
Predicting Recessions in the G-7

Robustness to Estimation Method, 1970:Q1-2011:Q4

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>Baseline</th>
<th>Firth's Bias Correction</th>
<th>Complementary Log-Log</th>
<th>King and Zeng's Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Equity</td>
<td>-0.312***</td>
<td>-0.278***</td>
<td>-0.308***</td>
<td>-0.277***</td>
</tr>
<tr>
<td>Price Growth</td>
<td>(0.0998)</td>
<td>(0.1010)</td>
<td>(0.0985)</td>
<td>(0.0930)</td>
</tr>
<tr>
<td>Term Spread</td>
<td>-0.463***</td>
<td>-0.440***</td>
<td>-0.412***</td>
<td>-0.439***</td>
</tr>
<tr>
<td></td>
<td>(0.1770)</td>
<td>(0.0983)</td>
<td>(0.1580)</td>
<td>(0.1140)</td>
</tr>
<tr>
<td>Log Real Oil Price</td>
<td>0.948***</td>
<td>0.902***</td>
<td>0.951***</td>
<td>0.903***</td>
</tr>
<tr>
<td></td>
<td>(0.2560)</td>
<td>(0.3180)</td>
<td>(0.2310)</td>
<td>(0.3130)</td>
</tr>
<tr>
<td>Real House Price Growth</td>
<td>0.003</td>
<td>0.000548</td>
<td>0.0114</td>
<td>-0.000181</td>
</tr>
<tr>
<td></td>
<td>(0.0408)</td>
<td>(0.0679)</td>
<td>(0.0388)</td>
<td>(0.0712)</td>
</tr>
<tr>
<td>Negative Real Equity Price Growth</td>
<td>0.281***</td>
<td>0.245**</td>
<td>0.290***</td>
<td>0.244**</td>
</tr>
<tr>
<td></td>
<td>(0.1040)</td>
<td>(0.1150)</td>
<td>(0.0991)</td>
<td>(0.1100)</td>
</tr>
<tr>
<td>No. of Obs.</td>
<td>948</td>
<td>948</td>
<td>948</td>
<td>948</td>
</tr>
<tr>
<td>AUC</td>
<td>0.844</td>
<td>0.844</td>
<td>0.84</td>
<td>0.844</td>
</tr>
</tbody>
</table>
We considered a variety of additional variables (financial and some non-financial), added to the baseline model one at a time.
Additional variables

- We considered a variety of additional variables (financial and some non-financial), added to the baseline model one at a time.

- Most contributed little (insignificant and no change in AUC):
 - 10 year government bond rate, real GDP growth, net fall in the daily real equity price over the past 2 quarters, implied S&P volatility, real equity price growth elsewhere, negative real equity price growth elsewhere, standard deviation of real equity price, and its change.
Additional variables

- We considered a variety of additional variables (financial and some non-financial), added to the baseline model one at a time.
- Most contributed little (insignificant and no change in AUC):
 - 10 year government bond rate, real GDP growth, net fall in the daily real equity price over the past 2 quarters, implied S&P volatility, real equity price growth elsewhere, negative real equity price growth elsewhere, standard deviation of real equity price, and its change
- Only rate of exchange rate depreciation versus the USD was significant.
Additional variables

- We considered a variety of additional variables (financial and some non-financial), added to the baseline model one at a time.
- Most contributed little (insignificant and no change in AUC):
 - 10 year government bond rate, real GDP growth, net fall in the daily real equity price over the past 2 quarters, implied S&P volatility, real equity price growth elsewhere, negative real equity price growth elsewhere, standard deviation of real equity price, and its change
 - Only rate of exchange rate depreciation versus the USD was significant.
 - Estimated coefficients on the baseline variables were roughly unchanged across all models.
Additional variables

- We considered a variety of additional variables (financial and some non-financial), added to the baseline model one at a time.
- Most contributed little (insignificant and no change in AUC):
 - 10 year government bond rate, real GDP growth, net fall in the daily real equity price over the past 2 quarters, implied S&P volatility, real equity price growth elsewhere, negative real equity price growth elsewhere, standard deviation of real equity price, and its change
- Only rate of exchange rate depreciation versus the USD was significant.
- Estimated coefficients on the baseline variables were roughly unchanged across all models.
- Baseline also robust to inclusion of additional lags (4 total).
We also looked at how the model performed in predicting severe recessions (deep in terms of output fall).

Predicting Severe Recessions in the G-7

Baseline Results, 1970:Q1-2011:Q4

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Equity Price Growth</td>
<td>-0.102***</td>
<td>-0.602***</td>
<td>-0.571***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0240)</td>
<td>(0.1680)</td>
<td>(0.2030)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term Spread</td>
<td>-0.714***</td>
<td></td>
<td></td>
<td>-0.645***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2000)</td>
<td></td>
<td></td>
<td>(0.2030)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Real Oil Price</td>
<td></td>
<td>1.365***</td>
<td></td>
<td>1.653***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.3930)</td>
<td></td>
<td>(0.4970)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real House Price Growth</td>
<td></td>
<td>0.076</td>
<td></td>
<td>0.0626**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.1020)</td>
<td></td>
<td>(0.0314)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Real Equity Price Growth</td>
<td></td>
<td></td>
<td>-0.0928***</td>
<td>0.516**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0302)</td>
<td>(0.2050)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Obs.</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
</tr>
<tr>
<td>AUC</td>
<td>0.801</td>
<td>0.811</td>
<td>0.739</td>
<td>0.702</td>
<td>0.756</td>
<td>0.823</td>
<td>0.901</td>
</tr>
</tbody>
</table>
Overall performance out-of-sample

Receiver Operating Characteristic Curve
One-Step Ahead Recession Start Predictions

Area under ROC curve = 0.8867

Note: The underlying logit model contains the change in the log real equity price, the negative changes in the log real equity price, the term spread, and the log real oil price. Initiating sample starts in 1970:Q1.
Asset Prices and Recessions

John C. Bluedorn, Jörg Decressin, Marco E. Terrones

Motivation
Questions and Contributions
Data and Model
Empirical Results
Baseline
Robustness
One-step ahead classification
Conclusion

Great Recession Starts

One-Step Ahead Classifier
Baseline Model at Start of Great Recession

Note: Red line indicates optimal threshold (Youden’s J-statistic) to achieve a false positive rate < 12%.
• Predictions are generally too low to merit interpretation as probabilities.
• When viewed as a classification problem, then the model does well for France, Germany, Italy, Japan, and the United Kingdom.
• However, it performs poorly for Canada and the United States.
• More work needed to inspect country-by-country.
• Focus on identifying new recessions with simple model centered on a few financial variables.

• Equity price growth, term spread, and oil price are significantly associated with new recessions, while house prices are not.

• Non-linearities evident in the effect of equity prices, with equity price drops showing larger effects (in absolute terms) than rises.

• Next steps . . .
 • more in-depth, out-of-sample analysis
 • country-by-country investigation ⇒ the rare events problem can be acute in these cases, likely necessitating the use of one of the alternative estimation methods.